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Abstract
Since the end of the last century, energy harvesting technologies have obtained prominent
development as the sustainable power supplies for billions of wireless sensor nodes distributed
in both the city and remote areas. Microelectromechanical system (MEMS) energy harvesters
based on the energy transferring mechanisms of electrostatic effect, electromagnetic induction,
and piezoelectric effect were first proposed to scavenge the vibrational energy from the ambient
environment. Thereafter, the piezoelectric nanogenerator and triboelectric nanogenerator
emerged as promising techniques to harvest diversified mechanical energy for addressing the
energy consumption of flourishing wearable devices. Targeting for a more efficient system,
multiple strategies for improving the output performance of individual energy harvesters as well
as hybridized energy harvesters are extensively investigated. Merging the well-developed
energy harvesters with energy storage, wireless data transmission, and other functional units,
self-sustainable systems have been realized. Shortly, with the evolving AI technologies, we can
foresee that the AI-assisted self-sustainable systems will also be achieved and play a vital role in
the future 5 G era. In this review, we systematically introduce the evolution of energy harvesting
techniques in the 5 G and IoT era, with detailed operation principles, structural designs,
enhancement strategies, self-sustainable and AI-assisted system development, and our
perspectives.

Keywords: energy harvesting, triboelectric nanogenerator (TENG), self-sustainable system,
self-powered sensor, artificial intelligence (AI)
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1. Introduction

In the past few decades, we have witnessed the enorm-
ous development of microelectromechanical system (MEMS)
technology and the extensive range of applications for vari-
ous miniature sensors it promoted [1]. The power consump-
tion of a sensor has been decreased to µW range while the
number of sensor nodes distributed in our cities keeps increas-
ing till billions [2–4]. Since the invention in 1799 by A Volta,
batteries have provided the primary practical choice as the
electricity source for portable devices [5]. However, they also
have certain drawbacks when integrated with the miniature
sensors, such as the limited lifespan that needs to be replaced
or recharged frequently, high contamination to the environ-
ment, biological incompatibility, and low power density that
makes their capacity too small when scaling to the millimeter
dimension [6, 7]. These drawbacks mentioned above greatly
hinder their applicability for the widely distributed small-scale
sensor nodes, especially for sensors applied in a harsh envir-
onment like high buildings, bridges, or vehicles [8]. To find
an alternative choice to batteries, MEMS-based energy har-
vesters have widely investigated as sustainable power sources
by converting various types of available ambient energies into
electricity, such as mechanical [9–11], thermal [12–20], light
[21–27], etc. In 2000, the 1st International Conference on
Micro and Nanotechnology for Power Generation and Energy
Conversion Applications (PowerMEMS) was held in Sendai,
Japan, to promote the technologies in this area. Since 2004,
special issues of PowerMEMS conferences with opportune
research advancements have been published in J Micromech.
Microeng. Along this evolutional trip of energy harvesting
technologies, we have spectated the flourishing of the extens-
ive applications they have brought (figures 1(A) and (B)
[28–36]).

Among the abovementioned energy sources, vibration as a
universal form of mechanical energy is ubiquitous and abund-
ant in various surrounding environments. Thus MEMS-based
vibration energy harvesters (VEHs) able to transfer mechan-
ical vibration energy from the ambient environment to electri-
city have been proposed as the green, sustainable, and mini-
aturized power supply for such sensors [37]. MEMS-based
VEHs are typically designed based on three main principles:
electromagnetic [38–40], electrostatic [41–43], and piezoelec-
tric [44–47]. The first concept of a MEMS VEH and its the-
oretical model was proposed by Professor Williams and Pro-
fessor Yates from the University of Sheffield in 1996 [48],
which is based on the electromagnetic induction discovered
by Michael Faraday in 1831: when applied external vibra-
tion, the coil and magnet will have relative displacement and a
voltage proportional to the time rate of change of the mag-
netic flux will be induced into the coil. There are mainly
two categories of designs for MEMS-based electromagnetic
vibrational energy harvesters (EM-VEHs), with fixed coils and
moving magnet [49–51] or fixed magnet and moving coils
[52–54], and some typical designs are shown in figure 1(C),
(i) [39, 55–57]. Generally, the EM-VEHs advantage in easy
fabrication, mature choices for magnet materials, no pull-in
effect, and large output current [58, 59]. Moreover, to improve

their output performance, several effective approaches have
been widely investigated by researchers, such as broadening
the operational bandwidth [60], overcoming the limited num-
ber of coil turns [61, 62], and improving the compatibility
with the MEMS system [63–65]. On the other hand, the first
MEMS-based electrostatic vibrational energy harvester (E-
VEH) and the corresponding energy conversion cycle model
was proposed by Professor Chandrakasan from MIT [66]. E-
VEHs contain a charged capacitor that can generate electric
energy when applied external vibrations through the capacit-
ance variation, with several designs shown in figure 1(C), (ii)
[66–69]. Electret materials, including silicon dioxide, Teflon,
Parylene, and CYTOP, which can store charges stably, are
utilized as the external bias to charge the capacitor continu-
ously [68–71]. The typical designs for E-VEHs include in-
plane overlapping, in-plane gap-closing, and out-of-plane gap-
closing [72]. Compared to EM-VEHs, E-VEHsmostly advant-
age in the compatibility with the MEMS fabrication process
and can be easily integrated with CMOS devices as an on-chip
power source [73, 74]. And to further improve their output per-
formance, researches include broadening bandwidth [75–77],
optimizing parameters to increase the maximum capacitance
variation [78, 79], exploring electret materials with higher sur-
face charge density and stability [80, 81], and avoiding the
pull-in effect have been performed [82, 83]. Besides, another
type of widely investigated MEMS-based energy harvesters
is piezoelectric vibration energy harvesters (P-VEHs), based
on the materials with piezoelectric effect firstly reported by
Professor J Curie and P Curie in 1880. Two MEMS-based P-
VEHs designed at an early time are shown in figure 1(C), (iii)
[45, 84]. When applied external mechanical strain or stress,
piezoelectric materials can generate electric charges due to
the induction of polarized electric dipole moment [85, 86].
And due to the unique material property, piezoelectric devices
are also widely used in other MEMS-based sensing and actu-
ation applications [87, 88], such as pressure sensor [89–91],
force sensor [92–94], accelerometer [95–97], ultrasound trans-
ducers [98–100], etc. Compared with EM-VEHs and E-VEHs,
P-VEHs have higher energy density in small scale, simpler
structure, and inherent reciprocal conversion capability [101–
103]. For P-VEHs, the operation modes (d31 mode and d33
mode) and structure configurations play a leading role in their
output performance, and multiple structure designs to fully
leverage the piezoelectric effect are one of the main improve-
ments directions [104]. Other directions include broadening
bandwidth [105–107], frequency up-conversion [108–110],
optimizing electrode design [111, 112], and exploring piezo-
electric materials with higher piezoelectric coupling coeffi-
cients [113, 114].

With the further development of the internet of things (IoT)
and wireless data transmission technique, we are now enter-
ing the new 5 G era, in which portable electronics are going
through a much more explosive advancement [115–117]. The
linkage between wireless sensors is no more limited to build-
ings, machines, or vehicles but extended to ourselves [118–
120]. The flourishing of wearable and implantable sensors
merging with our bodies to record our temperature, respiration
rate, blood pressure, and pulse changes the traditional ways
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Figure 1. The evolution of energy harvesting technologies. (A) Flourishing applications with the development of energy harvesting
technologies. Reproduced from [28]. CC BY 4.0. Reproduced from [29]. CC BY 4.0. Reproduced from [30]. CC BY 4.0. Reproduced from
[31]. CC BY 4.0. Reproduced from [32]. CC BY 4.0. Reproduced from [33]. CC BY 4.0. [34] John Wiley & Sons. © 2020 Wiley-VCH
GmbH. Reproduced with permission from [35]. CC BY-NC 4.0. [36] John Wiley & Sons. © 2020 Wiley-VCH GmbH. (B) Technology
evolution. (C) Typical devices for each energy transferring mechanism: (i) electromagnetic. © [2005] IEEE. Reprinted, with permission,
from [39]. © [2001] IEEE. Reprinted, with permission, from [55]. © [2008] IEEE. Reprinted, with permission, from [56]. Reproduced from
[57]. © IOP Publishing Ltd. All rights reserved, (ii) electrostatic © [2001] IEEE. Reprinted, with permission, from [66]. Reproduced from
[67]. © IOP Publishing Ltd. All rights reserved. Reproduced from [68]. © IOP Publishing Ltd. All rights reserved. © [2003] IEEE.
Reprinted, with permission, from [69], (iii) piezoelectric. Reproduced from [45]. © IOP Publishing Ltd. All rights reserved. © [2001] IEEE.
Reprinted, with permission, from [84]. Reprinted from [123], Copyright (2009), with permission from Elsevier. Adapted by permission
from Springer Nature Customer Service Centre GmbH: Nat. Commun Nature [131]. (2013), and (iv) triboelectric. Reprinted from [132],
Copyright (2012), with permission from Elsevier. Reprinted with permission from [136]. Copyright (2015) American Chemical Society.
Reproduced from [137]. CC BY 4.0. Reproduced from [138] with permission of The Royal Society of Chemistry.

we interact with the world [121]. To power these wearable
sensors, one of the most promising solutions is to scavenge
the biomechanical energy from human motions. Neverthe-
less, due to the generally low frequency (below several hertz)
and large deformation and strain range, previously designed
MEMS-based VEHs show less effectiveness and lower output
performance. Novel energy harvesting techniques with higher

wearability, stretchability, durability, washability, and mass
production ability are required to fulfill the new requirement
[122]. Bearing this proposal, the first piezoelectric nanogen-
erator (PENG) was reported in 2006 based on piezoelectric
ZnO nanowires (NWs) by Professor Z L Wang’s group, as
shown in figure 1(C), (iii) [123], which can generate electric
power with tiny physical motions and work in an extensive
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frequency range [124]. Since then, a large number of PENGs
have been designed based on two main approaches: layer
stacking and yarn intersection for on-body electricity gener-
ation [125–127]. And PENGs have shown great potential as a
compelling approach as the power supply for wearable devices
in inflexibility and durability [128–131]. Further, in 2012, a tri-
boelectric nanogenerator (TENG) that uses contact electrifica-
tion and electrostatic inductionwas also proposed by Professor
Z L Wang’s group [132]. Compared to other energy scaven-
ging devices, TENG advantages in broadmaterial choices, low
cost, simple fabrication process, large output in low frequency,
versatile operation modes, high scalability, and wearable and
implantable compatibility [133–135], with some representat-
ive devices shown in figure 1(C), (iv) [132, 136–138]. TENG
stands out not only as a promising power supply in harvesting
biomechanical energy for wearable and implantable electronic
devices, but also as an auxiliary energy unit to increase the
energy efficiency for energy harvesters aiming at scavenging
mechanical energy from various energy sources, including
vibrational energy, wind energy, and ocean energy [139–141].
In the past decade, TENG has received intensive efforts glob-
ally in a large number of aspects, including but not lim-
ited to energy density, structure innovation, stability, biocom-
patibility, surface treatment, circuit design, and systematic
integration [142–144].

Together with the development in the energy harvesting
techniques from the original energy transferring mechanisms,
energy enhancement strategies have also been deeply explored
to increase energy efficiency. To harvest mechanical energy in
the ambient environment, which is generally in an extensive
frequency range, broad bandwidth is always one of the most
significant research directions achieved through frequency
up-conversion, multi-DOF system, and nonlinearity system
[145–148]. Circuit designs also play an essential role in the
advancement of output performance, including but not limited
to an energy management unit to charge devices more effi-
ciently [149, 150], a bennet doubler combined with switches
to increase the current density [151, 152], and regulator design
to generate a stable direct current (DC) output [153, 154].
Besides, single energy transferring mechanism has its spe-
cific advantages but inevitably also shows its imperfection at
the same time. Therefore, hybridized energy harvesters with
the combination of multiple energy transferring mechanisms
have also been massively reported to better leverage the char-
acteristics of each principle [31, 155, 156]. Moreover, the
energy output is further increased through efficiently scaven-
ging energy from various sources [36, 157, 158].

Based on the advancement of energy harvesting technolo-
gies, the self-sustainable functional system became realizable
with the further integration of power management circuits,
energy storage units, functional devices like multiple sensors,
and wireless data transmission units. Over the past few years,
a large number of researches toward self-sustainable sys-
tems in environment monitoring, body sensor network, and
therapeutic treatment have been reported, such as gas sensing
[159, 160], temperature sensing [161], humidity sensing [34],

healthcare monitoring [28], vehicle monitoring [162], and
neural stimulation [163, 164]. Recently, the burst of artificial
intelligence (AI) technology has further enriched the func-
tions and applications of sensing systems. The conventional
manually analyzingmethod for sensory data naturally can only
extract shallow features [165–167]. With the help of machine
learning and deep learning to learn high-level features of the
raw data, various information collected by sensors can now
work in a more complicated and synergetic way [168, 169]. In-
edge techniques including human-machine interface, gesture
recognition, smart home, digital twin, and virtual and augmen-
ted reality become available with the combination of sensing
systems and AI technology [30, 32, 33, 35]. Although the cur-
rently proposedAI-assisted systems are based on self-powered
sensors with external power supply for other functional units,
we believe the AI-assisted self-sustainable system will be vig-
orously developed with the ongoing improvement of energy
harvesting technologies.

This review focus on the evolution progress of micro-scale
vibrational energy harvesters to nanogenerators towards a self-
sustainable functional system and, finally, the AI-assisted self-
sustainable system. Firstly, we provide a brief overview of the
MEMS-based VEHs and PENGs, followed by a detailed intro-
duction of TENGs. Then, we discuss the broad applications
of TENGs in the energy harvesting design for both biomech-
anical energy and mechanical energy, as well as the energy
enhancement strategies for them. In the next section, self-
sustainable systems enabled by the advancement of energy
harvesting techniques are presented. Moreover, we summar-
ize the recently reported work of AI-assisted systems with
self-powered sensors. Based on the above information, we
finally provide the conclusion and perspective at the end of
this review.

2. MEMS-based vibrational energy harvesters and
piezoelectric nanogenerators

Typically, there are three types of MEMS-based VEHs, based
on electrostatic effect, electromagnetic induction, and piezo-
electric effect. The MEMS EM-VEHs normally consist of a
seismic mass made by magnetic materials and a coil, and
the current can be induced through their relative movement
based on Faraday’s Law, as demonstrated in figure 2(A), (i).
The first actual MEMS EM-VEH was reported and meas-
ured by Professor Shearwood and Professor Yates in 1997,
which achieved a maximum RMS output power of 0.3 µW
under the resonant frequency of 4.4 kHz [170]. Figure 2(A),
(ii) shows a MEMS EM-VEH with multiple vibration modes
[53]. A permanent magnet is fixed on a supporting beam and
attached to a MEMS chip with a movable circular mass. The
center mass is suspended by a circular spring to enable both
in-plane and out-of-plane vibrations. And the center mass also
served as the movable coils with three diamond-shaped Al
coils deposited on it. This EM-VEHwas characterized by three
different vibration modes, with the direction along the z-axis,
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Figure 2. Working principle and typical devices proposed recently for (A) MEMS-based EM-VEHs. Reproduced from [53]. © IOP
Publishing Ltd. All rights reserved. Reprinted with permission from [54]. Copyright (2014), AIP Publishing LLC. © [2014] IEEE.
Reprinted, with permission, from [134], (B) MEMS-based E-VEHs Reproduced from [173]. © IOP Publishing Ltd. All rights reserved.
Reproduced from [174]. © IOP Publishing Ltd. All rights reserved. © [2016] IEEE. Reprinted, with permission, from [175],
(C) MEMS-based P-VEHs © [2012] IEEE. Reprinted, with permission, from [105]. Eprinted by permission from Springer Nature Customer
Service Centre GmbH: Microsyst. Technol. Springer [179] (2012). Reprinted from [185], Copyright (2019), with permission from Elsevier.

and 60◦ and 150◦ with respect to the x-axis, with the over-
all power density of 0.444 µW cm−3, 0.242 µW cm−3, and
0.125 µW cm−3. Based on a new design to further increase
the circular mass area and to apply the softening of the circu-
lar spring-mass system, an EM-VEH with a wide frequency
range was also proposed. Figure 2(A), (iii) shows an EM-
VEH with broad frequency enabled by four small mass-spring
structures fixed on the frame around the center mass [171].
When the external excitation reaches a certain level, the cen-
ter mass will engage with the small mass-spring structures,
thus induce the spring stiffening effect. A maximum nor-
malized resonance offset with the value of 78.7% has been
achieved in this work under the acceleration of 3 g, with the
peak power density of 56 nW cm−3. Another MEMS EM-
VEH with wide operation bandwidth is shown in figure 2(A),
(iv) [54]. Through balancing of structure parameters of the
two clamped-clamped beams on each side, three different
vibration modes, including out-of-plane mode, torsion mode,
and twist mode, can have original resonant frequency close
to each other. Further combined with the spring softening

mechanism, the vibration mode with lower frequency would
be able to engagewith neighboring vibrationmodewith higher
frequency, thus enable the frequency broadening phenomenon
and achieve an ultra-wide operation bandwidth. Under the
acceleration of 1 g, the resonance frequency can be extended
from its original 62.9 Hz to 383.7 Hz.

MEMS E-VEHs mainly consist of a structure with vari-
able capacitance under external excitations and a pre-charged
electret layer to provide the voltage bias continuously, as
depicted in figure 2(B), (i). Considering the relative moving
direction between the movable and static combs, E-VEHs can
be divided into three main types, namely the in-plane over-
lapping, in-plane gap closing, and out-of-plane gap-closing
[58, 72]. As shown in figure 2(B), (ii). In 2010, Professor
Y Suzuki’s group at the University of Tokyo designed an
E-VEH with an in-plane overlapping structure based on an
electret material named CYTOP, which has an extremely high
surface charge density compared to previously applied con-
ventional polymer electret materials like TeflonAF [172, 173].
With a novel electrostatic levitation method to avoid the
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stiction, a maximum output power of 1 µW has been achieved
with an active area of 11.6 × 10.2 mm2 under 63 Hz and
2 g acceleration. To increase the capacitance variation and the
output power, another E-VEH with the in-plane overlapping
structure was designed as shown in figure 2(B), (iii) by Pro-
fessor B Yang and Professor C Lee in 2010 [174]. With the
rotary comb and ladder spring structure, maximum capacit-
ance variation of 8 pF for one set of fixed combs is achieved
under a resonant frequency of 110 Hz and acceleration of
2.5 g at 1 atm with the device volume of 39.4 mm3, and
the maximum output power of 0.39 µW has been obtained.
Figure 2(B), (iv) shows an E-VEH with the out-of-plane gap-
closing structure put forward by Professor F Wang’s group in
SUSTech [175]. A pre-charged CYTOP layer was also applied
to provide the bias, and stoppers were added on the bottom
plate to achieve a broad bandwidth. The maximum power out-
put of 4.04 µW has been achieved under the acceleration of
1 g and frequency of 155.8 Hz, and average output power of
2.22 µW has been obtained under random vibrations with 1 g
acceleration and 160 ± 12.5 Hz frequency range.

MEMSP-VEHs are based on the piezoelectric effect, which
was firstly reported by J Curie and P Curie in 1880 [176].
This effect describes a phenomenon that certain solidmaterials
are able to generate electric charges if undergoing an external
mechanical strain or stress due to the induction of polarized
electric dipole moment, as demonstrated in figure 2(C), (i).
Start from the 1960s, the ferroelectric lead zirconate titanate
[PZT or Pb(Zr1-xTix)O3] is the material with the widest util-
ization in P-VEH for its high piezoelectric coefficient, com-
patible with MEMS fabrication process and low cost [177].
A MEMS P-VEH with PZT thin film using d33 piezoelectric
mode was proposed by Professor J Y Park’s group in 2010
[178]. A PbTiO3 layer was applied as an interlayer to further
increase the piezoelectric property of the PZT thin film, and
interdigital shaped Pt electrodes were deposited on the PZT
thin film to collect the voltage output of d33 mode, which
is more sensitive to the external vibration compared to d11
mode. The maximum output of 1.1 µW has been achieved
for this work under the acceleration of 0.39 g and the res-
onant frequency of 528 Hz. And the corresponding normal-
ized power density reaches 7.3 mW cm−3 g−2. To harvest
the mechanical energy from vibration sources in the envir-
onment more sufficiently, a MEMS P-VEH with low reson-
ant frequency and wide bandwidth was designed as shown
in figure 2(C), (ii) [105]. Due to the amplitude limitation
tuned by a spacer mounted on the backside of the P-VEH, an
operation frequency bandwidth of 17 Hz was measured, and
the corresponding normalized frequency bandwidth reaches
0.47. After that, a MEMS P-VEH with further lower reson-
ant frequency and driven acceleration was designed based
on an S-shaped spring, as shown in figure 2(C), (iii) [179].
At the driven acceleration of 0.06 g, maximum normalized
power of 0.31 µW g−2 has been achieved. And the nonlinear
phenomenon can be induced with larger driven acceleration
by a mechanical stopper to broaden the bandwidth, and the
threshold acceleration can be tuned by varying the distance of
this stopper. Through replacing the mechanical stopper with

another P-VEH with a much higher resonant frequency as
a frequency-up-conversion stopper, the low-frequency vibra-
tion can be converted to self-oscillation at the high resonant
frequency and further improve the efficiency and operation
bandwidth. Besides PZT, other new materials like single-
crystal piezoelectric ceramic lead magnesium niobate—lead
zirconate titanate (PMN-PZT) [180] and lead-free materials
like barium titanate (BaTiO3) [181], aluminum nitride (AlN)
[182], and zinc oxide (ZnO) [183] have also been utilized to
piezoelectric energy harvesters. Compared with PZT, lead-
free piezoelectric materials are more environmentally friendly.
While among them, P-VEHs based on ZnO thin film also
advantages in the simple fabrication process for no require-
ment for poling or post-annealing [184]. A P-VEH based on
ZnO thin film is shown in figure 2(C), (iv) [185]. The pro-
posed P-VEH is composed of two sub-systems, with one inner
system consisted of a small circular mass with high reson-
ant frequency and one outer system facilitating the low res-
onance. As shown in the figure, ZnO thin film is deposited
and patterned on the top of the outer arc beams for harvesting
vibrational energy, with a thickness of 3 mm. Two resonant
peaks and the maximum power normalized power density of
1.75 × 10−7 W cm−3 g−2 are successfully achieved.

In 2006, the first piezoelectric nanogenerator (PENG)
was proposed by Professor Z L Wang’s group based on
ZnO nanowires (NWs) [124]. And the vertically and later-
ally aligned ZnO NWs with the help of polymethyl methac-
rylate (PMMA) to achieve a synchronized charging and dis-
charging process for better output performance were further
designed by Professor Z L Wang’s group in 2010, as shown in
figure 3(A), (i) [186, 187]. In 2012, Professor Y Park’s group
integrated ZnO NWs with a charged dielectric film on a tex-
tile substrate for the actual applications in wearable devices,
as shown in figure 3(A), (ii) [188]. This PENG with a textile
substrate is able to provide an output current of 2.5 µA and an
output voltage of 8 V. Figure 3(A), (iii) shows another typical
PENG design fabricated with PDMS and BaTiO3 nanopillars
(NPs) by Professor Z Li’s group [189]. The mixture of PDMS
elastomer and BaTiO3 NPs are prepared and molded to a rect-
angular sheet. And the Cr layer and Al layer are deposited by
magnetron sputtering onto the upper and lower surfaces as two
electrode layers. Also In 2015, Professor S Kim’s group con-
structed a stable PENG fiber based on polyvinylidene fluoride-
cotrifluoroethylene (PVDF-TrFE) shown in figure 3(A), (iv)
[190]. Sheets wrapped by carbon nanotubes (CNTs) and
silver-coated nylon were applied as the outer electrode and
inner electrode, respectively. This PENG fiber can not only
generate a power density over 50 µW cm−3 but also are with
high flexibility, stretchability, and stability. Recently, PENGs
also have received great development and exploration in out-
put performance and applications. Based on a new piezoelec-
tric material Sm-PMN-PT, a PENG with a three-dimensional
intercalation electrode to increase the output power density
was designed, as shown in figure 3(B) [191]. Previously, the
interdigital electrode design with two-dimensional was widely
applied in piezoelectric energy harvesters, while this design
has the limitation of the requirement to balance the strip width
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Figure 3. Piezoelectric nanogenerator: (A) typical devices. Reprinted with permission from [186]. Copyright (2012) American Chemical
Society. Reproduced from [188] with permission of The Royal Society of Chemistry. [189] John Wiley & Sons. © 2015 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. [190] John Wiley & Sons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
(B)–(E) Recently development and applications: (B) A PENG with three-dimensional intercalation electrode. Reproduced from [191].
CC BY 4.0, (C) A PENG with liquid metal-based synthesis of SnS monolayer Reproduced from [192]. CC BY 4.0, (D) PENG fibers for
wearable textile Reprinted with permission from [193]. Copyright (2017) American Chemical Society, (E) Flexible PENG for deep brain
stimulation Reproduced from [194] with permission of The Royal Society of Chemistry.

for either low output current density or poor stain uniform-
ity [112]. The PENG is divided into multiple stackable units
sandwiched by a pair of well-matched electrodes. The struc-
ture becomes similar to a capacitor and ensures the electric
field is evenly distributed, making the materials can be fully
polarized even the thickness of the electrode layer is very thin.
To fabricate this 3D PENG, each stackable piezoelectric thin
film is firstly fabricated separately with an average thickness of
110 µm. And the 3D PENG is realized through the stacking of
multiple single units. All the Al/PDMS electrodes on the right
side and left side are connected together, respectively. The
maximum output current of 329 µA has been achieved for this
PENG with an effective area of 1.2 cm2 stacked with six units.
Except for conventional piezoelectric ceramic thin-films, two-
dimensional (2D) materials also provide viable avenues in
this field for their ability to withstand large strains and poten-
tial of large piezoelectricity. The tin monosulphide (SnS), as

one of the group IV mono-chalcogenides, has been envisioned
theoretically to have excellent piezoelectricity. However, its
applications have been greatly hindered by the difficulty in
the fabrication for large-scale surface coverage. Through the
proposed synthesis process via the van der Waals exfoliation
technique as shown in figure 3(C), a large scale and highly
crystalline semiconducting monolayer SnS was successfully
achieved [192]. This monolayer shows a promising piezoelec-
tric coefficient of about 26.1 pm V−1 and was further applied
to fabricate a PENG. Attributing to the large d11 value, a high
energy conversion efficiency is realized, with a large aver-
age peak voltage output around 150 mV at only 0.7% strain.
And its suitability for low-frequencymotion energy harvesting
and wearable applications was also demonstrated. Thanks to
the flexibility of PENGs, they can also be weaved seamlessly
into fabrics for fabricating multifunctional wearable devices.
Based on the fiber drawing process, piezoelectric fibers can
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be obtained and further be weaved into a cotton textile, as
shown in figure 3(D) [193]. The fabricated CNT/PVDFmicro-
structured fibers show great durability with high piezoelectric
output, with up to 6 V under 26 000 operation cycles. And
the textile can be worn as cloth with good wearable comfort.
In a 90◦ bend-release action of the elbow, the piezoelectric
textile is able to generate the output with ∼10 V in open-
circuit voltage and 5–15 nA in short-circuit current. Further-
more, the PENGs can also serve as a promising platform for
self-powered medical devices. Figure 3(E) shows a flexible
PENG with an indium modified crystalline Pb(In1/2Nb1/2)O3–
Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIMNT) thin film encapsulated
by a plastic substrate [194]. Cr/Au layers serve as the top and
bottom electrodes deposited by sputtering. Due to the high
piezoelectric charge coefficient d33 of up to ∼2700 pC N−1,
an extremely high current of 0.57 mA can be achieved with
slight bending. And the generated current is enough to meet
the requirement of inducing forearm movements in mice.

3. Transducing mechanisms for triboelectric
nanogenerators

While PENGs do have advantages in power density, flexibil-
ity, and have been developed for a long time, the drawbacks
of piezoelectric materials also limit their applicatioons, such
as difficult fabrication process and high pollution caused by
lead. Since Professor Z LWang’s group inventing the TENG in
2012 [132], it has become a promising energy harvester due to
the advantages of low-cost, easy fabrication, and high conver-
sion efficiency [140, 141, 195–197]. The TENG can convert
mechanical energy into electrical energy based on the coup-
ling of the triboelectric and electrostatic effects, which also
provides effective means for studying triboelectrification and
overturns conventional understanding of electrostatic effect
being harmful in both daily life and industrial manufactur-
ing. In the past years of research works focusing on materi-
als’ selection and improvement [198–200], structures’ design
and optimization [201–204], andmanagement circuits’ applic-
ation and optimization [150, 205–207], the TENG has been
utilized in harvesting distributed and low-frequency mech-
anical energy such as wind energy [208–210], blue energy
[211–213], and biomechanical energy [143, 214, 215], further
successfully powering electronics like LED arrays, thermo-
meters, and wireless sensors.

In figure 4(A), Xu et al have proposed an electron-cloud-
potential-well model for explaining contact-electrification
(CE) or triboelectrification (TE), which is based on real-time
quantitative measurements with a TENG worked under high
temperatures [216]. The electron clouds of material A and
material B are overlapped due to the ‘screening’ between the
twomaterials introduced in physical contact, and then electron
could hop from the atom of material A to the atom of material
B by asymmetric double-well potential. After the separation of
materials A and B, most of the electrons transferred to material
B will be kept due to the energy barrier. Therefore, the contact
electrification occurs with the positively charged material A

and negatively charged material B. The transition probability
of electron transfer as a function of the interatomic distance
has been calculated to support the electron-cloud-potential-
well model [217, 218]. Besides basic disclosure of triboelec-
trification in solid-solid interface [219–223] and liquid-solid
interface [224–229], adjustable properties like temperature
[230], UV light irradiation [231], the atmosphere [232], sur-
face curvature [233], functional groups [234, 235] have been
proved as influence factors for surface charge accumulation,
which indicate effective strategies of preparing high-output
TENG.

Generally, kinds of TENGs are divided into four main
working modes as shown in figure 4(B): vertical contact sep-
aration mode (VCSTENG), contact-sliding mode (CSTENG),
single electrode mode (SETENG), and free-standing tribo-
electric layer mode (FSTENG) [236–238]. As the most basic
structure, the VCSTENG utilizes relative movements perpen-
dicular to the interface between a pair of electrodes, where
polymer electrodes are deposited with conductive electrodes.
A representative example is illustrated in figure 4(C): Wang
et al proposed an arch-shaped VCSTENG consisting of a
multi-layer polymer electrode and a single-layer metal elec-
trode [239]. The separation distance in the VCSTENG can be
achieved by arches and other internal structural supports [240–
244] or external support like springs and sponges [245–248].
During the contact-separation processes, the potential changes
between the two electrodes vary with changing distance, and
external current flows are generated to keep charge balance.
In contrast, the CSTENG utilizes relative displacement paral-
lel to the contact interface, and a representative device reported
by Wang et al has illustrated in figure 4(D) [249]. The recip-
rocating sliding of two contacted electrodes leads to electric
flowing to keep charge balance. Similarly, this model can be
applied in devices of cylindrical rotation [250, 251] and disc
rotation [252, 253]. In figure 4(E), a representative SETENG
has proposed by Chen et al, constructing a single polymer
layer deposited with a metal layer on the bottom [254]. The
working principle of SETENG is similar to VCSTENG, and
electric flows are generated due to changing distance between
the external object and the electrode. Typically, this mode
is most useful for harvesting mechanical energy from mov-
ing objects and relieving the problem of wires and is widely
applied in achieving tactile sensing [255–258]. As for the
FSTENG reported by Wang et al and shown in figure 4(F),
a freestanding object is forced to move along a similar plane
with other stationary electrodes. And electric flows between
electrodes are generated as charge balance changes with mov-
ing objects. The electrodes in the FSTENG can be designed
into a series of electrodes for harvesting mechanical energy in
rotating [259–261] and sliding [262–264].

To sum up, the TENG is a wide-ranging technology for
various kinds of mechanical energy and has presented prom-
ising applications in environment monitoring [265, 266],
human-machine interface [133, 169], smart home [168], and
healthcare [267, 268]. Benefit from plentiful material’s selec-
tions and versatile structures, the TENG shows the potential
of harvesting renewable energies eco-friendly and efficiently.
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Figure 4. Triboelectric nanogenerator: principles & representative devices. (A) The overlapped electron-cloud model proposed for
explaining contact-electrification. [216] John Wiley & Sons. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Schematic
of four main working modes of the TENG. Typical TENG devices with: (C) vertical contact separation mode. Reprinted with permission
from [239]. Copyright (2012) American Chemical Society, (D) contact-sliding mode. Reprinted with permission from [249]. Copyright
(2013) American Chemical Society, (E) single electrode mode. [254] John Wiley & Sons. © 2016 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, and (F) free-standing triboelectric layer mode. [271] John Wiley & Sons. © 2014 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.

4. Human motion-based TENG devices

With the gradually completed development of triboelectric
principles and charge generating modes [132, 196, 236, 238,
239, 249, 269–271], the TENG included energy harvesters and
self-powered sensors have been boomed focus on the energy
source varied from the natural environment [162, 204, 211,
272–275] to human body motion [116, 133, 135, 276–279].
To push forward the revolution of TENG, especially under
the healthcare and physical signals detection framework, there
are plenty of studies providing various approaches for the
future realization of self-sustainable power supply and sensors
for wearable electronics. Apart from rigid mechanical com-
ponents based on TENG for human body motion monitoring
and healthcare applications, e.g. exoskeleton auxiliary struc-
tures [30, 35, 280–283], many flexible materials and devices
are envisioned to be a great promising solution to fulfill the
aim of energy harvesting and sensing from a human body,

including stretchable rubber-based TENG [284–286], woven
fabric-based TENG [287–289], textile-based TENG [28, 33,
290, 291] and electronic skin-based TENG [163, 292–294].

Wang et al propose a stretchable and shape-adaptable
single-electrode triboelectric nanogenerator for harvesting
human motion energy, as shown in figure 5(A). The innov-
ative point of the rubber-based TENG mainly uses liquid-
based electrodes, which are composed of potassium iodide
and glycerol (KI-Gly) liquid electrolyte. By filling the liquid-
based electrode in the silicone rubber mold, the TENG exhib-
its excellent stretchability and multiple deformability. Thanks
to these good properties, the liquid-based single electrode
TENGdemonstrates stable output performances. That is, oper-
ating under 250% tension stretching for 10 000 cycles of
repeated contact-separation motion, the TENG remains ori-
ginal state without deterioration. Besides, the output achieves
high performance with an open-circuit voltage of 300 V,
short-circuit current density of 17.5 mA m–2, and maximum
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Figure 5. Various wearable triboelectric nanogenerators for a wide range of sensing applications. (A) Fabrication process of a stretchable
and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte. Reproduced with permission from [295]. CC
BY-NC 4.0. (B) A bionic stretchable nanogenerator for underwater motion sensing. Reproduced from [300]. CC BY 4.0. (C) Schematic
illustration and fabrication process of a triboelectric fabric nanogenerator for harvesting biomotion. Reprinted with permission from [305].
Copyright (2020) American Chemical Society. (D) Demonstration of super-elastic liquid metal fibers and textiles based on the triboelectric
mechanism with self-powered breathing monitoring and gesture sensing capabilities. Reproduced from [306]. CC BY 4.0. (E) Schematic
diagram of a smart textile based on TENG for monitoring daily activities of humans and photographs for robotic hand control. Reprinted
from [312], Copyright (2019), with permission from Elsevier. (F) Self-powered triboelectric electronic textiles for intelligent
Human-Machine Interaction [256].

output power of 2.0 W m–2. The stretchable TENG config-
ures different body joints for human biomechanical energy
collecting, such as arm shaking, human walking, and hand
tapping. For practical employment, multiple commercial elec-
tronics can be completely powered to achieve human body
monitoring and health conditions assessment [295]. To pro-
pel the development and application of the stretchable rubber-
based TENG on human body energy harvesting and sensing,
more scenarios of different activities are included [296–299].
Zou et al present a bionic stretchable triboelectric nanogener-
ator applied to harvest energy and sense signals from underwa-
ter humanmotions. The inspiration comes from an electric eel.
By mimicking the structure of ion channels on the cytomem-
brane of electrocyte and using polydimethylsiloxane (PDMS)

and silicone for manufacturing a mechanical control channel
under the stress-mismatch principle, a flexible, stretchable,
and mechanical responsible TENG is designed to use in wet
and dry environments, especially perfectly suit for underwater
employment, as shown in figure 5(B). For the stretchability,
it shows excellent tensile fatigue resistance, which operates
by a linear motor under 50% strain for over 50 000 cycles.
Based on the novel bionic structure and excellent perform-
ance, it can provide two unique working modes, which allows
the TENG to generate over 170 V open-circuit voltage in dry
conditions and over 10 V in liquid conditions. In this way,
the bionic stretchable nanogenerator can accomplish a human
body motion sensor and a promising alternative power source
for wearable electronics in any surroundings [300].
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In addition to the stretchable rubber-based wearable TENG
for human motion sensing and kinetic harvesting, woven
fabric-based nanogenerators have emerged as great poten-
tial and comfortable candidates to achieve healthcare mon-
itoring and disease pre-diagnosis in daily life [301–304]. In
figure 5(C), Chen et al report a TENG intelligently take
advantage of the annoying and harmful electrostatic break-
down phenomenon of clothes to directly acquire DC out-
put to store and power wearable electronics. Compared to
the normal traditional fabric TENGs with an alternating cur-
rent (AC) output, the DC fabric TENG handle without rec-
tifier bridge demonstrates great convenience and high effi-
ciency in practice. With its high output performance, a size of
1.5 cm × 3.5 cm DC fabric TENG sliding at 2 Hz can easily
flicker 416 serially connected light-emitting diodes (LEDs) or
115 LEDs marked as letters ‘DC FABRIC TENG’. A sliding
cycle can light up these LEDs for one time, which demon-
strates the high efficiency of the power generation. Further-
more, by weaving yarn supercapacitors into the TENG, a
lightweight, flexible, wearable, low coast, and high-efficiency
power supply is fulfilled to harvest human motion energy
from daily activities [305]. Owing to the high output and
power storage of the woven fabric-based TENG, it can act
as a health-monitoring electronics supply for multiple sig-
nals acquisition. Furthermore, we have seen the functionalit-
ies on direct body motion tracking and self-sustained wear-
able systems. As shown in figure 5(D), Dong et al use super-
elastic liquid metal to fabric a scalable and stretchable tri-
boelectric fiber with a micro-textured surface and several
electrodes integration. With the process of thermal draw-
ing, the superelastic TENG accomplishes almost the same
efficiencies as planar systems. This kind of fibers displays
high sustain strains under repeated large deformations (up
to 560%), good electrical output performance (up to 490 V,
175 nC), and deformable machine-washable. In the long
run, the triboelectric fabric fibers can not only act as the
energy harvester but also can achieve multi-functional smart
textiles, including breathing monitoring and gesture sensing
capabilities [306].

Moving forward, a suit of wearable textile-based cloth is
taking into account two characteristics of the wearing comfort
and practical monitoring healthcare applications. Wide sorts
of applications are included to measure the physical motions
and signs and symptoms of humans, along with the ambient
environment for healthy living conditions, which can broadly
apply to the patients and elderly people for daily monitor-
ing and rehabilitation training [307–311]. He et al develops
a triboelectric nanosensor on textile with a simple dip-coating
method to achieve multiple functionalities, including energy
harvesting, physical sensing, and gas sensing. Using the dip-
coating method with coating solutions of poly (3,4-ethylene
dioxythiophene) polystyrene sulfonate (PEDOT: PSS) with
polytetrafluoroethylene (PTFE) pairing, the TENG can obtain
high output performance (a maximum output power density
of 2 W m−2 under 2 Hz foot stepping) and low matched
impedance (as low as 14 MΩ). This TENG tactfully lever-
ages a height-varying multi-arch structure to achieve hand
gestures monitoring for interpreting American Sign Language

and robotic hand feedback controlling. In addition, the arch
structure with the PEDOT: PSS coated textile realizes a large
strain sensing range from 10% to 160%, which helps to adapt
different human/robot fingers and detect multiple angle bend-
ing. Not only for applying to gesture monitoring but the
PEDOT: PSS coated textile would also benefit the CO2 con-
centration detection of the human ambient environment. Mov-
ing forward, the smart textile can be integrated with wearable
suits to realize great potential as both energy harvesters and
various functional self-powered sensors for multiple health-
care applications [312].

Beyond smart textile for real clothes using, the elec-
tronic skin (e-skin) is highly interesting for the advantages
of high flexibility, stretchability, sensitivity, stability, which
has gained wide attention in human-machine interactions and
AI [31, 313–316]. Peng et al present a self-powered elec-
tronic skin, using all-nanofiber triboelectric nanogenerators
and a sandwiching fabrication to attain a breathable, biode-
gradable, antibacterial, and conformality wearable nanogen-
erator and nanosensor. The sandwiching fabrication method
employs polylactic-co-glycolic acid (PLGA) and polyvinyl
alcohol (PVA) as upper and lower layers, with inserting silver
nanowire (Ag NW), a sandwich-like micro-to-nano hierarch-
ical porous structure is manufactured. Furthermore, the prop-
erties of antibacterial and biodegradable capability change
with the variation of the concentration of Ag NW, PVA, and
PLGA. Thanks to this novel structure, the e-skin not only
acquires a high specific surface area for contact electrifica-
tion but also attains numerous capillary channels for thermal-
moisture transfer. This kind of e-skin is used on a human body
to achieve physiological signal sensing and joint movement
detecting, realizing real-time and whole-body movements
and signals monitoring, which provides a super practicable
hospital equipment-carried around with multi functionalit-
ies [317]. As depicted in figure 5(F), a self-powered wash-
able electronic textile (E-textiles) is fabricated to apply in
the aspects of touch/sensing performance and human-machine
interfacing by Cao et al Owing to the interaction of the CNTs
and fabrics, the E-textiles demonstrates great advantages in air
permeability, satisfactory washability, and even mass fabrica-
tion. The excellent stability would hold great application pro-
spects for future wearable suits and medical aids [256].

5. TENG-based hybrid energy generators

Considering that most IoT devices are adopted in the envir-
onment or human relative applications where exhibit abund-
ant mechanical energy, various generators with mechanical
energy harvesting ability will be most desirable. In this regard,
TENG technology, due to its superior advantages of high
output performance, simple fabrication, low cost, versatile
operation modes, wide material availability, and implant-
able compatibility [116, 143, 208, 318], has been extensively
explored for mechanical energy harvesting. Benefitted from
the above merits, integrating TENG with other transducer
mechanisms yields a promising research direction for hybrid-
izedmechanical energy harvesters. Furthermore, TENG-based
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Figure 6. Hybridized mechanical energy harvesters. (A) an easily assembled electromagnetic-triboelectric hybrid nanogenerator. [322]
John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) A hybridized TENG and EMG blue energy
harvester based on a pendulum structure. Reprinted from [204], Copyright (2020), with permission from Elsevier. (C) A universal
self-chargeable power module. [34] John Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) A rotational
pendulum triboelectric-electromagnetic hybrid generator. Reprinted from [281], Copyright (2019), with permission from Elsevier. (E) A
highly miniaturized freestanding kinetic-impact-based hybridized nanogenerator. Reprinted from [280], Copyright (2020), with permission
from Elsevier. (F) All-in-one piezo-triboelectric energy harvester module based on piezoceramic nanofibers. Reprinted with permission
from [331]. Copyright (2020) American Chemical Society. (G) An all-fiber hybrid piezoelectric-enhanced TENG. Reprinted from [332],
Copyright (2018), with permission from Elsevier.

hybrid energy harvesters integrated with power management
circuitry, energy storage units, and functional components, a
variety of systems with self-sustainability can be achieved for
broad applications [311, 319–321].

As illustrated in figure 6(A), an easily assembled
electromagnetic-triboelectric hybrid nanogenerator (EANG)
was proposed by Zhong et al for collecting energies from
multiple sources [322]. The proposed system consists of a
cylindrical stator with multiple attached electrodes and a cyl-
indrical rotator with several FEP films mounted on the outer
surface. When the top driver of the device is driven to rotate by
wind or water flow, the rotator will spin due to the magnetic
coupling force, resulting in the contact-separation motion

between the FEP film blades and the fixed Cu electrodes for
triboelectric output generation. Meanwhile, the magnets in
the bottom of the rotator will induce electromagnetic output
in the copper coils fixed underneath the lower stator. With a
rotating speed of 500 rpm, the maximum output power of the
TENG and the electromagnetic generator (EMG) could reach
1.05 mW and 58.3 mW, respectively. The combined output
power is sufficient to directly power various sensors, such as
humidity sensors, thermometers, etc, indicating that the prac-
tical issues of sustainable power supply can be solved by such
an HMEH strategy for the smart home.

The energy in the ocean area is one of the most promising
renewable clean energy resources for large-scale practical
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applications. Conventional blue energy harvesters are mostly
based on the EMG, while the optimal operating frequency of
EMG is higher than 50 Hz. Not all water motions are suit-
able to be harvested by EMG, especially for those rectilin-
ear motions that operate below 10 Hz. TENGs are capable
of scavenging low-frequency (<5 Hz) mechanical energy with
the advantages of low cost, high voltage, and simple fabric-
ation. Moreover, the energy conversion efficiency of TENG
can be further improved by integrating with EMG to form a
hybridized system [211, 323–325]. As shown in figure 6(B),
a hybridized blue energy harvester was designed based on
a pendulum structure containing an interdigital electrodes-
TENG, a switches-TENG, and an EMG [204]. The outputs of
TENGs are enhanced by an optimized flexible circular ring
supporting a rolling magnet. With a novel designed hybrid-
ized circuit, the output power can reach 95.4 mW at a load
of 100 Ω. After the management circuit, a lithium battery
of 200 mAh can be charged from 3.07 V to 3.35 V by this
blue energy harvester with six hours of water wave impac-
tion. The proposed device integrated with a solar cell panel
and a Bluetooth low energy sensor can establish an all-weather
IoT platform, which shows the potentials of battery-free IoT in
ocean areas. In figure 6(C), a universal self-chargeable power
module (USPM) is presented that can efficiently harvest ocean
wave blue energy, human bio-mechanical energy, and vehicle
vibration energy [34]. The proposed high-performance power
module is comprised of a hybrid energy harvester, including
one contact separation TENG, one sliding TENG, and one
EMG, and a power management circuit. By implementing a
multiple spring-based mechanical coupling design, the hybrid
EMG and TENG system show high performance despite mini-
aturization under low acceleration (⩽1 g) and low frequency
(⩽6Hz) vibration. The electromagnetic performance is further
optimized by using a soft magnetic material-based flux con-
centrator, while electrospun nanofibers enhance the triboelec-
tric performance. The USPM is a compactly designed device
including a power management circuit, a battery charging cir-
cuit, built-in rechargeable storage, and aUSB-C outlet, provid-
ing a DC power of a maximum 34.11 mW. It demonstrates the
capability of harvesting blue energy and powering a wireless
water health monitoring system using a PANI/LIG/PDMS-
based pH sensor. Similar hybrid generators for vibrations were
also reported [326, 327]. Figure 6(D) shows a rotational pen-
dulum based TENG-EMG hybrid system, including a pendu-
lum rotor, coils, TENG blades, and a cylindrical frame [281].
The unrestricted rotational movement of the pendulum enables
the hybrid generator with wide applicability to low-frequency
(<5 Hz) and irregular vibration. When the pendulum rotor
rotates, themagnetic flux across each coil will change and gen-
erate the electromagnetic output. Besides, the Cu ring settled
on the rotor will also contact with the PTFE intermittently
during rotating for generating the triboelectric output. Based
on the above configuration optimization, the maximum power
density of the TENG and EMG can reach 3.25 W m−2 and
79.9 W m−2, respectively, with a water wave frequency of
2 Hz and an amplitude of 14 cm. Combining these two ele-
ments, the proposed hybridized system is successfully demon-
strated to integrate a buoy for utilizing the energy from waves,

which shows the potential to directly drive various IoT sensors.
In addition, the HMEH based on EMG and TENG also can
be used to collect the energy from human motions. As shown
in figure 6(E), a highly miniaturized freestanding kinetic-
impact-based hybridized energy harvester for various human-
induced vibrations was reported [280]. The rational integra-
tion of EMG and TENG into a common mechanical system
can improve the power generation capability of the hybrid
generator under the same mechanical input. For the testing
using shaker at 5 Hz, the EMG and the TENG can produce
a maximum power of 102.12 mW and 171.13 µW, respect-
ively. For different body-worn positions of the hybrid gener-
ator under walking and slow running activities, a storage capa-
citor can be effectively charged up to various voltage levels
according to the motion-induced accelerations. Moreover, two
digital temperature-humidity meters and an array of commer-
cial LEDs are simultaneously powered by the random vibra-
tions of human motions. With the aid of a customized power
management circuit, the output can be used to power modern
electronics like smartphones, smartwatches, and wireless tem-
perature sensors.

Except for integrating TENG with EMG to harvest mech-
anical energy directly from the living environment, another
common method of TENG combining with PENG has
triggered intensive research in the past decade [187, 328–
330]. For instance, figure 6(F) shows a piezo-triboelectric
hybrid energy harvester module (HEHM) [331]. The pro-
posed all-in-one HEHM, as a green energy source for wear-
able devices, comprising a top-piezoelectric energy harvester
module (T-PEHM) layer, a bottom-PEHM (B-PEHM) layer,
and a triboelectric energy harvester module (TEHM) layer
with an arch shape was characterized based on flexible piezo-
ceramic nanofibers. The output performance of the T-PEHM
and B-PEHM layers fabricated with an interdigitated electrode
(IDE) was optimized by employing a z-axis array arrange-
ment of the single modules. As shown in the figure of full-
contact state, the piezoceramic nanofibers were stressed due to
the sufficient displacement and pressing force, which can gen-
erate maximum piezoelectric energy. Meanwhile, the PEHM
with IDE will show the d33 operating mode, which generates
a higher voltage than the piezoelectric module with top and
bottom electrode d31 operation mode. Based on this hybrid
mechanism, the all-in-one HEHM could generate a maximum
voltage of 253 V and a maximum power of 3.8 mW, which
can charge a 0.1 µF capacitor to 25 V within 40 s. Moreover,
figure 6(G) shows a textile-based triboelectric-piezoelectric
nanogenerator (TPNG) with a multi-layer structure for col-
lecting the mechanical energy from human motions [332].
Silk fibroin nanofibers and PVDF nanofibers were electro-
spun on the two conductive fabrics as TENG and PENG parts,
respectively. The two parts were combined together to form
a cloth-shape device, which has great mechanical flexibility
as well as desirable wearing comfort. This process leads to
the accordant working state of the TENG part and PENG part,
which would induce the same potential direction and get the
higher electric output. Therefore, TPNG achieved an outstand-
ing maximum output performance with 500 V output voltage,
12 mA current, and 0.31 mW cm−2 power density through the
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well-collaborative work between TENG and PENG. Finally, a
wearable self-powered real-time microsystem based on TPNG
was demonstrated for fall-alert detection. Themicro-cantilever
is actuated by the instantaneous output of TPNG as a switch
to sending the emergency message to a remote terminal for
falling down detection.

Through the above works referred to TENG-based hybrid
energy generators, mechanical stimulus either in types of rota-
tions or vibrations are efficiently converted into electric power.
In table 1, different energy harvesting units among hybrid
devices are illustrated, resulting in TENG possessing relat-
ively less weight ratio and volume ratio than EMG [34, 280,
281, 322, 326, 327]. Although EMG has relatively high output
power and power density when compared with TENG, TENG
has good advantages in energy harvesting with low frequency
and broad operational bandwidth. Besides, it can also improve
the capacitor charging performance for the hybridized system.
Apart from the structure hybridization with other energy gen-
erators, TENG can also serve as a functional part through the
material hybridization with piezoelectric materials to improve
the output performance [331, 332]. Overall, TENG can con-
tribute enhancement for hybrid energy generators in energy
harvesting.

6. Output enhancement strategies for TENGs

As an emerging technology, TENG can effectively harvest var-
ied environmental low-frequency mechanical energy. How-
ever, there is still a distance for commercial use of TENG due
to the insufficient function modes and output performance. It
is of great significance to enhance the output performance of
the TENG and push forward the commercial process of TENG
devices [333–335]. In addition to hybridized with EMG and
PENG mentioned in the previous section, another approach
for improving output performance of TENG is to utilize an
optimum contact structure, effective circuit design, upgraded
power management, etc [336–338].

First of all, TENG can be implemented by increasing the
efficiency of contact electrification to enhance the surface
charge density of TENG. For instance, figure 7(A) shows
a high-efficiency bioinspired photoelectric electromechanical
integrated nanogenerator by comprehensively utilizing solar
energy and tidal energy, and a bioinspired photoelectric-
electromechanical integrated TENG (Pem-iTENG) [339].
A composite membrane is constructed by a layer-by-layer
self-assembly method of planting a type-II P-N heterojunc-
tion (TiO2/PANI) on the surface of bionic cilia. Pem-iTENG
accumulates numerous negative charges in the PDMS film due
to the excess photogenerated electrons from photocatalysis
and the triboelectric negative charges from contact electrific-
ation. Pem-iTENG shows the maximal output power dens-
ity (17.23 mW cm−2), open-circuit voltage (124.2 V), and
the short-circuit current density (221.6 µA cm−2) under the
action of tidal waves and sunlight. More importantly, by refer-
ring to the method of evaluating power conversion efficiency
in solar cells, Pem-iTENG exhibits a high energy conversion
efficiency of 16.72%. Moreover, figure 7(B) shows a type

of ‘self-matched’ tribo-piezoelectric nanogenerators (TPNG)
with enhanced output based on the augmented triboelectric
output [340]. The surface charge of TPNG is generated by
PVDF that modifies the surface potential of the PET layer to
match the electron-transfer direction of the spider silk during
triboelectrification. Thus, the enhanced difference in poten-
tial wells depths between the spider silk and the PET/PVDF
can significantly increase the number of transferred electrons
and thereby boost the energy output. After encapsulating the
device in a silk-based package, it can be implanted in the
chest of a Sprague-Dawley rat for heartbeat energy harvest-
ing and monitoring. Next, an outstanding improvement of
TPNG can obtain a maximum instantaneous power density of
4016 mW m−2. A large-scale and continuous roll-to-roll man-
ufacturing process indicates that the ‘self-matched’ TPNG has
great potential to approach the ‘green’ and the human-friendly
intelligent IoT era. Figure 7(C) presents a microstructure-
designed direct-current TENG (MDC-TENG) with a ration-
ally patterned electrode structure to realize the miniaturized
sliding block structure at the same time [341]. By tailoring the
electrode structure, the surface charge density of MDC-TENG
with the size of 1 cm× 5 cm can be improved to 5.4 mC m−2.
As a demonstration, the MDC-TENG can charge a commer-
cial capacitor of 660 µF to around 0.05 V in 4.5 s. These
excellent performances represent potential applications of the
MDC-TENG in mechanical energy harvesting and motion
vector sensing. Especially, its advantages of miniaturization
and simple external circuit resulted from DC output provide a
solution strategy for TENGs to be applied in small electronic
device systems orMEMS as an energy supply resource or self-
powered sensor.

Bennet doubler is a method of the charge pump for the con-
tinuous doubling of a small initial charge through a sequence
of operations with three plates [342, 343]. Leveraging from
this mechanism, figure 7(D) shows a self-sustained condition-
ing system that makes TENG work at high voltages for high-
energy conversion [152]. The proposed system utilizes an
unstable Bennet doubler combinedwith a high-voltageMEMS
plasma switch in a 2-stage circuit. The hysteresis of the high-
voltage MEMS plasma switch is controllable by topological
design, and the actuation of the switch combines the principles
of micro-discharge and electrostatic pulling, without the aid
of power-consuming control electronic circuits. The harvested
energy per cycle over time is improved by two orders of mag-
nitude compared to the case using only a full-wave rectifier,
and by 34 times compared to another case using a full-wave
rectifier and a full-hysteresis switch in a 2-stage conditioning
system, respectively. A maximum output current for a stable
output DC voltage of 3.3 V is obtained with a 330 kΩ resist-
ive load. Thus the practical available average power is 30 µW,
corresponding to an energy per mechanical cycle of 6 µJ as the
excitation frequency of the TENG is 5 Hz. The employment of
the high-voltageMEMS plasma switch in the conditioning cir-
cuits can significantly push forward the practical and commer-
cial applications of the energy harvesters by largely improving
the system performance. Similarly, based on the Bennet dou-
bler mechanism, figure 7(E) presents an out-of-plane design
to achieve high-performance TENG [151]. The electrodes B
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Figure 7. Output enhancement for TENGs. (A) A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator.
Reproduced from [339]. CC BY 4.0. (B) A type of ‘self-matched’ tribo-piezoelectric nanogenerator. [340] John Wiley & Sons. [2020].
(C) The rationally patterned electrode of direct-current TENG for ultrahigh effective surface charge density. Reproduced from [341].
CC BY 4.0. (D) A self-sustained conditioning system that allows the TENG to work at high-voltages for high-energy conversion without
power-consuming electronics. Reproduced from [152]. CC BY 4.0. (E) Out-of-plane design of the Bennet doubler-based
Programmed-TENGs. Reprinted from [151], Copyright (2020), with permission from Elsevier. (F) A high-performance triboelectric
nanogenerator based on charge shuttling. Reproduced from [296]. CC BY 4.0. (G) Switched-capacitor-convertors based on the fractal
design for output power management of TENG. Reproduced from [348]. CC BY 4.0.

and D are arranged on the left part, while electrodes A and C
are arranged on the right part of the designed structure. There
are two different dielectric combination groups for compar-
ing the output performance, i.e. PTFE vs. PTFE with 600 µm
thickness and FEP vs. PTFE with 520 µm thickness. Since the
friction material is the same for the PTFE vs. PTFE group,
the voltage increases slower than that of the FEP vs. PTFE
group. However, due to a thicker dielectric layer, the PTFE
vs. PTFE group shows a higher maximum voltage. The max-
imum voltage is 1400 V and 1150 V for the PTFE vs. PTFE
and the FEP vs. PTFE group, respectively. Both two groups
reach the maximum peak power at around 200 MΩ with 3.3
and 2.5 mW, respectively.

Charge improvement from material modifications is finite,
while vacuum strategy limits applications of TENGs. There-
fore, more effective methods are desired to overcome air
breakdown for broad applications of TENG [318, 344, 345].
Figure 7(F) proposes a high-performance TENG based on the
shuttling of charges [296]. The charge shuttling TENG con-
sists of a pump TENG, a main TENG, and a buffer capacitor.
The electrodes of the main TENG and the buffer capacitor
form two conduction domains, presenting a quasi-symmetrical
structure with a Q+ side and a Q− side. The capacitance
of the main TENG changes upon contacts and separations,
while that of the buffer capacitor remains constant, indu-
cing voltage differences between them. The charges shuttled
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between the main TENG and the buffer capacitor in a quasi-
symmetrical way will be generated electricity on the two
loads. When the main TENG changes to the contact state, the
capacitance of the main TENG grows, causing the voltage
on it to descend. Therefore, charges return from the buffer
capacitor to the main TENG via the loads. Consequently,
an ultrahigh projected charge density of 1.85 mC m−2 is
obtained in the ambient conditions. Based on this mechanism,
an integrated device for water wave energy harvesting shows
the feasibility of the charge shuttling TENG as a fundamental
device to be applied in complex structures for various practical
applications.

In addition, the output charge can be multiplied by setting
capacitors charged in serial and discharged in parallel con-
nection with a switch [346, 347]. However, the high output
impedance and switching loss largely reduce the switched-
capacitor converter (SCC)’s power efficiency due to the imper-
fect topology and transistors. Fractal-design-based switched-
capacitor-convertors (FSCC) provides significant guidance
for the development of power management toward multi-
functional output in numerous applications [348]. As shown
in figure 7(G), an FSCC with characteristics including high
conversion efficiency, minimum output impedance, and elec-
trostatic voltage applicability was proposed, in which a rough
or piecemeal geometric shape can be divided into several parts
and each part is reduced and has the self-similar property. Con-
sidering the low charges in TENG, large switching loss and
zero gate voltage drain current of MOSFET, and super-low
leakage current of rectifier diode, the SCC composed of rec-
tifier diodes and capacitors are designed to convert the elec-
trostatic voltage of TENG. By integrating the FSCC power
management system on a printing circuit board (PCB), over 67
times charge boosting, 14.3 Am−2 current density, and 954W
m−2 power density can be reached by a common TENG under
a pulse output for driving electric devices like a buzzer. Under
constant output mode, over 94% of total energy transfer effi-
ciency is realized with an output power density of 37.09 mW
m−2, and mobile electric devices like digital vernier caliper
and temperature hygrometer can be driven continuously by the
TENG with the FSCC power management system.

7. Self-sustainable systems and applications

The ultimate goal of the energy harvesters is the establishment
of self-sustainable systems or systems with a prolonged bat-
tery lifetime bymaking use of the waste energy from the ambi-
ent environment, e.g. biomechanical energy associated with
human body motions. We have witnessed the flourishing of
various self-sustainable systems targeting diversified applic-
ations, which integrate the developed energy harvesters with
other functional components, such as power management cir-
cuits, energy storage units, sensing units, etc [159, 349–354].
For instance, figure 8(A) presents a self-sustainable wireless
sensing node (WSN) for IoT applications, where a TENG tex-
tile is integrated with a coil through amechanical switch [307].
By controlling the mechanical switch, the triboelectric charges
can be instantaneously discharged, and an oscillating signal

will then be formed in this RLC circuit. A near-by coil can
receive this oscillating signal directly through inductive coup-
ling, with a transmission range up to 1 m. The resonant fre-
quency, which serves as the sensing parameter, contains the
information regarding the capacitance of the TENG itself or a
single-pixel of the sensor. The resonant frequency-based sens-
ing is highly stable over environmental interferences such as
humidity and transmission distance compared to the conven-
tional sensing with the signal amplitude. For practical demon-
stration, a wireless electronic scale and a mat-based human-
machine interface for 2D/3D control are realized. Targeting
for vibrational energy harvesting, figure 8(B) depicts a self-
sustainable autonomous WSN based on a triboelectric and
piezoelectric hybrid energy harvester [162]. The device con-
sists of a hinged-hinged PZT bimorph and T-shaped proof
masses where the contact-separation TENGs are located. A
broadband characteristic has been achieved with the impact of
TENG, and a tunable frequency is demonstrated by adjusting
the axial force. Due to the large output from the PENG and
the good sensing capability of the TENG, the WSN is con-
structed with the PENG as the power source and the TENG as
the acceleration sensor. With the low-power setting, the PENG
can sustainably power an Arduino nano and RF transmitter
that can send the triboelectric signal out by Zigbee. Under this
configuration, the authors demonstrated train status monitor-
ing in a virtual-reality environment, showing its great prospect
for self-sustainable WSN in the harsh environment. Gener-
ally, the harvested energy from the energy harvester is stored
in an energy storage unit to power up sensing units, through
which way more self-sustained sensing functionalities can be
realized. In figure 8(C), a narrow-gap TENG textile has been
developed to harvest various kinds of biomechanical energy,
and a facile strategy to boost up the current output of such flex-
ible TENGs was proposed as well [28]. An instantaneous dis-
charging has been achieved by integrating a diode and a mech-
anical switch, contributing to 25 times higher current output
and a stable output waveform over different pressing/releasing
speeds. The soft, flexible, and thin characteristics of the TENG
textile ensure a moderate output under various operation con-
ditions even when it is randomly scrunched. The TENG tex-
tile can be put inside a shoe, harvesting biomechanical energy
from foot motions, which can be stored in a capacitor and then
be used to power up a Bluetooth module for humidity and tem-
perature sensing. In a similar systematic configuration, a self-
powered wireless indoor positioning system is constructed by
a magneto-mechano-triboelectric nanogenerator (MMTEG), a
power management unit, and an IoT Bluetooth beacon [355].
TheMMTEG that converts a gentle magnetic field into electri-
city can generate an open-circuit voltage and short-circuit cur-
rent of 708 V and 277 µA under an ACmagnetic field of 7 Oe,
which is high enough to enable the continuous operation of the
IoT beacon.When a user approaches the target beacon, the IoT
device can transmit a wireless signal with its location inform-
ation to a smart pad and then to the main monitoring computer
through wireless internet service. Apart from biomechanical
energy, ocean wave blue energy is also an abundant energy
source worthy of being reused [204, 212, 323]. For instance, a
USPM for both automobile vibrational energy and blue energy
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Figure 8. Self-sustainable systems and applications. (A) A self-sustainable WSN for IoT applications. Reprinted from [307], Copyright
(2020), with permission from Elsevier. (B) A self-sustainable autonomous WSN based on a triboelectric and piezoelectric hybrid energy
harvester. Reprinted from [162], Copyright (2021), with permission from Elsevier. (C) A narrow-gap TENG textile constructed a
self-powered system for temperature and humidity sensing. Reproduced from [28]. CC BY 4.0. (D) Self-powered TENG system for direct
muscle stimulation. Reproduced from [29]. CC BY 4.0. (E) Self-powered intracellular drug delivery driven by a TENG. Reprinted from
[362], Copyright (2019), with permission from Elsevier. (F) A SPM based on an implantable TENG. Reproduced from [363]. CC BY 4.0.
(G) A smart soft-robotic gripper system aiming at digital twin applications. Reproduced from [30]. CC BY 4.0. (H) A scalable floor
monitoring system with deep learning-enabled smart mats. Reproduced from [32]. CC BY 4.0.

scavenging has been reported, containing an EMG and a tri-
boelectric generator in a multiple-spring mechanical coupling
configuration [34]. The UPSM is in a compact design where a
power management circuit, an energy storage unit, and a USB-
C outlet are integrated together. A self-powered wireless water
PH monitoring system was demonstrated with the UPSM con-
verting simulated wave energy into electric power. A mobile
application displaying the wirelessly received PH value was
also developed, demonstrating a complete and user-friendly
wireless sensing system with a self-sustainable characteristic.

Moving from the outside of the body to the inside,
implanted energy harvesters scavenging energy from muscle
stretching, biofluid/blood flowing, and sonic waves penet-
rated deep tissues have been developed for the prolonged
operation of implanted devices [356–358]. Compared to
wearable electronics, implanted electronics suffer from a
much higher cost of substitution and management of the

conventional batteries, which is desperately in need of self-
sustainable systems. Due to the ubiquitous existence of
the biomechanical energy around us, we have seen various
self-sustainable implantable systems combining mechanical
energy harvesters with implanted devices. For example, neural
interfaces are evolving towards self-powered systems by integ-
rating with energy harvesters such as TENGs [164, 359–361].
In figure 8(D), the direct muscle stimulation for future muscle
function loss treatment has been demonstrated, with the aid
of a stacked-layer TENG and a multi-channel epimysial elec-
trode [29]. The stacked TENG is specially designed to achieve
a large current, enabling the effective stimulation of themuscle
tissue. On top of that, an optimal electrode configuration is
also obtained by mapping tests, further improving the TENG
stimulation efficiency. Interestingly, it is found that stimu-
lation with a TENG pulse generates a more stable output
force than conventional square waves, possibly due to the
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avoided motoneuron recruitment synchronization. The high-
voltage output of the TENG would also benefit the drug deliv-
ery systems. In figure 8(E), a TENG-driven electroporation
system for intracellular drug delivery is developed, with min-
imal cell damage both in vitro and in vivo [362]. In this system,
biomechanical energy-driven TENGs with different structures
were fabricated for either in vitro or in vivo electroporation,
with the assistance of a nanoneedle array electrode. The TENG
voltage pulse triggers the increase of plasma membrane poten-
tial and the permeability of the membrane, while the nan-
oneedle array enhances the localized electrical field at the
nanoneedle-cell interface and molecular influx cooperatively.
This integrated system achieves efficient delivery of exogen-
ous materials into various types of cells with a delivery effi-
ciency of up to 90%, showing a great prospect for self-tuning
drug delivery. Moving forward, implantable energy harvesters
can be integrated with implanted functional units to form fully
implanted self-sustainable systems. Figure 8(F) shows a self-
powered implantable symbiotic pacemaker (SPM), which con-
sists of an implanted TENG, a power management unit, and a
pacemaker unit [363]. The TENG device is entirely packaged
by Teflon and PDMS to enhance the stability and avoid liquid
damage to it. Owing to the discrepancy between the TENG
output and power consumption of the pacemaker unit, the elec-
tricity was firstly stored in the capacitor of the PMU; the switch
of the PMU was then turned on by a magnet functioning as a
wireless passive trigger. Through this way, the pacemaker unit
could be driven to produce electrical pacing pulses and con-
trol cardiac contraction rate. With the ceaseless investigation
on the energy harvesters, we wish to see the prosperous future
development of self-sustainable systems both for wearable and
implantable applications.

Generally, the data analysis of conventional sensing sys-
tems relies on manual or simple feature extraction, which
would limit the full potential of the sensors. In recent years,
AI has become more popular and capable thanks to advanced
algorithms, increased data volumes, and improved computing
power/storage. In particular, machine learning-based data ana-
lytics have received immense attention from a broad discip-
line of research areas, which offers brand new possibilities for
novel applications with superior capabilities in solving com-
plicated tasks [364–370]. Targeting for digital twin applica-
tions, figure 8(G) presents a smart soft-robotic gripper system
based on triboelectric sensors in two configurations for grip-
per continuous bendingmotion sensing and tactile information
capturing [30]. The tactile TENG (T-TENG) with patterned
electrodes can detect sliding, contact position, and gripping
mode of the gripper, while the length TENG (L-TENG) meas-
ures the bending angle, enabling comprehensive monitoring of
the gripper system.With the aid of machine learning to process
the multi-parameter inputs, the gripper can recognize various
objects with 97.1% accuracy and 98.1% with sensor channels
from 6 to 15. A digital twinmodel is established to simulate the
robotic manipulation and real-time object recognition in the
duplicate VR environment. Since machine learning assisted
data analytics offer a possibility to extract the full sensory
information from sensors, the requirement on the amount and
density of the sensors would be highly reduced. For example,

Shi et al proposed a deep learning-enabled floor monitor-
ing system with scalable triboelectric mats, which are dif-
ferentiated by unique ‘identity’ electrode patterns fabricated
with a low-cost and highly scalable screen printing technique
(figure 8(H)) [32]. Each pattern offers a specific electrode cov-
erage rate, which affects the amplitude of the triboelectric out-
put signal. With a specific arrangement of the triboelectric
mats in an array, the electrodes of them can be parallelly con-
nected to minimize the output channels to reduce the system
complexity and computational cost. Position/trajectory track-
ing and activity monitoring can be readily achieved directly
from the sensory output thanks to the specially designed ‘iden-
tity’ electrode patterns. A deep learning-assisted data ana-
lytic enables the recognition and differentiation of different
users from their distinctive gaits, through which a smart home
environment has been demonstrated with auto-controlled door
access granted only to the valid users. The average predic-
tion accuracy can reach 96% for a 10-person CNN model
with 1000 data samples. This smart floor technology may
lay the foundation of future smart building/home by provid-
ing a video-privacy-protected and highly secured recognition
method.

8. Conclusion

With the rapid development of MEMS technology as well
as the wireless data transmission technology, the new 5 G
era we are entering into has shed light on the requirement
for a wireless sensor network consisted of billions of smart
sensors and IoT devices widely distributed in both the city
and remote areas. For the massive amount of these sensors
and the harsh environment that some of them are applied
in, the traditional batteries are no longer the most proper
choice due to their drawbacks, including the high contam-
ination, low lifespan, and low energy density. To explore a
sustainable and green power supply for these wireless sensor
nodes, energy scavenging devices that are capable to con-
tinuously transfer mechanical energy from the ambient envir-
onment to electricity have been designed and developed. At
first, to harvest the vibrational mechanical energy and power
the sensors applied in high buildings, bridges, or vehicles,
MEMS-based VEHs have been well investigated with three
primary energy transferring mechanisms, including electro-
static, piezoelectric, and electromagnetic. Moreover, with the
flourishing wearable electronics, the new requirement for a
sustainable power supply with the characteristics including
flexible, bendable, durable, stretchable, and able to scav-
enge the human motions with very low frequency or large
deformation has been put forward. In this regard, the PENG
and TENG have been correspondingly designed to harvest
biomechanical energy. Simultaneously, strategies to further
improve their output performance, including the broaden-
ing operational bandwidth, design of power management cir-
cuits, and hybridized energy harvesters, have been studied.
On top of that, the self-sustainable system becomes realizable
when further integrating the well-developed energy harvesters
with functional units, energy storage units, and wireless data
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transmission units. Furthermore, with the help of machine
learning technology, AI-assisted systems have been designed
for broader and more cutting-edge applications, including
VR/AR, HMI, healthcare, and smart home.

Table 2 has listed the five representative energy harvesters
as the energy supply for various application scenarios. With
the advantages of flexibility and low operation frequency,
TENG and PENG become the promising energy supply for
wearable and implantable devices, and can also serve as the
self-powered sensor in healthcare monitoring. P-VEH and
EM-VEH, for their high output power and energy dens-
ity, are always the essential part in hybridized energy har-
vesters for a self-sustained system with high power consump-
tion. At the same time, low-frequency and broad-bandwidth
design are also the overriding part for energy harvesters to
ensure the stability of high output when applied in the real-
istic environment. Furthermore, scavenging more available
energy sources, like the radiant energy from the sun light, is
also the viable method for the application in various outdoor
environments.

Despite the viable progress in developing energy har-
vesters, several challenges still remained to be solved on
the road toward the future AI-assisted self-sustainable sys-
tem. First and foremost, the output performance of the cur-
rent energy harvesters should be further improved to power
such a functional system with higher power consumption
compared to conventional wireless sensor nodes. Potential
research directions include broadening operational bandwidth
through multi-DOF system, spring nonlinearity and stop-
per effect, exploring new materials like the electret materi-
als for E-VEHs, the piezoelectric materials for P-VEHs and
PENG and materials with a higher potential difference for
TENG, structural and electrodes design innovation, and the
design of power management circuit. Besides, the hybridized
energy harvesters also worth to be more thoroughly studied
for their potential in scavenging various energy sources in
the environment to significantly improve the output power.
Apart from the hybridization in the structural domain, more
compact designs rooted in their fundamental principles should
be taken into consideration for the further enhancement to
each other, rather than just simply combine each part. Except
for the energy generation unit, an energy storage unit with
superior stabilities is the prerequisite of self-sustainable sys-
tems for long-term operation, which worths equal signific-
ance in future research. Besides the technology evolution in
energy harvesting, the decrease of the power consumption
of AI functional units should be studied parallelly, such as
the application of AI-chips to decrease the power required
for large data transmission and processing through directly
training the input signals on that chip. In this regard, the
bright future of the 5 G era will be greatly beneficial by the
realization of AI-assisted self-sustainable systems in diverse
application areas.
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